

California State University SAN MARCOS

ALGEBRA

EXPONENTS

DEFINITION

An **exponential function** is a function of the form

 $f(x) = a \cdot b^x$

where a and b are constants and x is the input variable.

The function $f(x) = b^x$ with b > 0 has a **domain** of $(-\infty, \infty)$ and a **range** of $(0, \infty)$.

RELATIONSHIP

A logarithm is the inverse operation to exponentiation. Therefore

 $\mathbf{a}^{\mathbf{x}} = \mathbf{b}$ or

can be written as $\log_{\mathbf{a}}(\mathbf{b}) = \mathbf{x}$

Therefore both statements ask for a power x such that a raised to that power equals b.

PROPERTIES OF EXPONENTS

RULE	EXAMPLE
$a^0 = 1$	$4^0 = 1$
$a^1 = a$	$5^1 = 5$
$\frac{1}{a^x} = a^{-x}$	$\frac{1}{2^5} = 2^{-5}$
$a^x \cdot a^y = a^{x+y}$	$2^3 \cdot 2^4 = 2^{3+4}$
$\frac{a^x}{a^y} = a^{x-y}$	$\frac{3^5}{3^4} = 3^{5-4}$
$(a^x)^y = a^{x \cdot y}$	$(4^3)^5 = 4^{15}$
$a^{\log_a(x)} = x$	$14^{\log_{14}(5)} = 5$

California State University SAN MARCOS

ALGEBRA

LOGARITHMS

x

DEFINITION

An logarithmic function is a function of the form

 $f(x) = a \cdot \log_b(x)$

where a and b are constants and x is the input variable.

The function $f(x) = \log_b(x)$ with b > 0 has a **domain** of $(0, \infty)$ and a **range** of $(-\infty, \infty)$.

NATURAL LOGARITHM

The **natural logarithm** is a logarithm with base e

 $\log_e(x) = \ln(x)$

$\log_{10}(b) = \ln(b)$

CHANGE OF BASE FORMULA

$$\log_a(b) = \frac{\log_{10}(b)}{\log_{10}(a)} = \frac{\ln(b)}{\ln(a)}$$

PROPERTIES OF LOGARITHMS

The following rules apply to the natural logarithm $\ln(\mathbf{x})$.

RULE	EXAMPLE
$\log_b(1) = 0$	$\log_{10}(1) = 0$
$\log_b(b) = 1$	$\log_{10}(10) = 1$
$\log_b\left(\frac{1}{u}\right) = -\log_b(u)$	$\log_7\left(\frac{1}{8}\right) = -\log_7(8)$
$\log_b(u \cdot v) = \log_b(u) + \log_b(v)$	$\log_5(7 \cdot 8) = \log_5(7) + \log_5(8)$
$\log_b\left(\frac{u}{v}\right) = \log_b(u) - \log_b(v)$	$\log_7\left(\frac{8}{9}\right) = \log_7(8) - \log_7(9)$
$\log_b(a^c) = c \cdot \log_b(a)$	$\log_5(6^7) = 7 \cdot \log_5(6)$
$\log_b(\sqrt[c]{a}) = \frac{1}{c} \cdot \log_b(a)$	$\log_8(\sqrt[3]{9}) = \frac{1}{3} \cdot \log_8(9)$

