ALGEBRA

EXPONENTS

DEFINITION

An exponential function is a function of the form

$$
f(x)=a \cdot b^{x}
$$

where a and b are constants and x is the input variable.
The function $f(x)=b^{x}$ with $b>0$ has a domain of $(-\infty, \infty)$ and a range of $(0, \infty)$.

RELATIONSHIP

A logarithm is the inverse operation to exponentiation. Therefore

$$
\mathbf{a}^{\mathbf{x}}=\mathbf{b} \quad \text { can be written as } \quad \log _{\mathbf{a}}(\mathbf{b})=\mathbf{x}
$$

Therefore both statements ask for a power x such that a raised to that power equals b.

PROPERTIES OF EXPONENTS

RULE	EXAMPLE
$a^{0}=1$	$4^{0}=1$
$a^{1}=a$	$5^{1}=5$
$\frac{1}{a^{x}}=a^{-x}$	$\frac{1}{2^{5}}=2^{-5}$
$a^{x} \cdot a^{y}=a^{x+y}$	$2^{3} \cdot 2^{4}=2^{3+4}$
$a^{x}=a^{x-y}$	$\frac{3^{5}}{3^{4}}=3^{5-4}$
a^{y}	$\left(4^{3}\right)^{5}=4^{15}$
$\left(a^{x}\right)^{y}=a^{x \cdot y}$	$14^{\log _{14}(5)}=5$
$a^{\log _{a}(x)}=x$	

csusm.edu/stemsc

ALGEBRA

DEFINITION

An logarithmic function is a function of the form

$$
f(x)=a \cdot \log _{b}(x)
$$

where a and b are constants and x is the input variable.
The function $f(x)=\log _{b}(x)$ with $b>0$ has a domain of $(0, \infty)$ and a range of $(-\infty, \infty)$.

NATURAL LOGARITHM

The natural logarithm is a logarithm with base e

$$
\log _{e}(x)=\ln (x)
$$

CHANGE OF BASE FORMULA

$$
\log _{a}(b)=\frac{\log _{10}(b)}{\log _{10}(a)}=\frac{\ln (b)}{\ln (a)}
$$

PROPERTIES OF LOGARITHMS

The following rules apply to the natural logarithm $\ln (\mathbf{x})$.

RULE	EXAMPLE
$\log _{b}(1)=0$	$\log _{10}(1)=0$
$\log _{b}(b)=1$	$\log _{10}(10)=1$
$\log _{b}\left(\frac{1}{u}\right)=-\log _{b}(u)$	$\log _{7}\left(\frac{1}{8}\right)=-\log _{7}(8)$
$\log _{b}(u \cdot v)=\log _{b}(u)+\log _{b}(v)$	$\log _{5}(7 \cdot 8)=\log _{5}(7)+\log _{5}(8)$
$\log _{b}\left(\frac{u}{v}\right)=\log _{b}(u)-\log _{b}(v)$	$\log _{7}\left(\frac{8}{9}\right)=\log _{7}(8)-\log _{7}(9)$
$\log _{b}\left(a^{c}\right)=c \cdot \log _{b}(a)$	$\log _{8}(\sqrt[3]{9})=\frac{1}{3} \cdot \log _{8}(9)$
$\log _{b}(\sqrt[c]{a})=\frac{1}{c} \cdot \log _{b}(a)$	

